
UCRL-TR-222763

Parallel H1-based auxiliary space
AMG solver for H(curl) problems

Tz. V. Kolev, P. S. Vassilevski

July 11, 2006



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 

 
 
 

 

 This work was performed under the auspices of the U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 
 



PARALLEL H1-BASED AUXILIARY SPACE AMG SOLVER FOR
H(curl) PROBLEMS

TZANIO V. KOLEV AND PANAYOT S. VASSILEVSKI

Abstract. This report describes a parallel implementation of the auxiliary space meth-
ods for definite Maxwell problems proposed in [4]. The solver, named AMS, extends
our previous study [7]. AMS uses ParCSR sparse matrix storage and the parallel AMG
(algebraic multigrid) solver BoomerAMG [1] from the hypre library. It is designed for
general unstructured finite element discretizations of (semi)definite H(curl)) problems
discretized by Nédélec elements. We document the usage of AMS and illustrate its
parallel scalability and overall performance.

1. Introduction

Based on a proper stable decomposition of the lowest order Nédélec (edge) finite el-
ement space, Hiptmair and Xu introduced in [4] an auxiliary space preconditioner for
H(curl) problems, which in addition to standard smoothing utilizes efficient auxiliary
space solvers for related Poisson problems. Their method borrows the main tool from
the auxiliary mesh preconditioners in [6] and [3], namely, the interpolation operator Π,
which maps vector fields into the the Nédélec finite element space Vh. Motivated by
these developments, we considered several options for constructing unstructured mesh
AMG preconditioners for H(curl)-problems and reported the computational results in
[7]. The present report describes a parallel implementation of these methods in the hypre
library.

We are interested in solving the following variational problem stemming from Maxwell’s
equations:

(1.1) Find u ∈ Vh : (α curlu, curlv) + (β u,v) = (f ,v) , for all v ∈ Vh .

Here α > 0 and β ≥ 0 are scalar coefficients. We allow β to be zero in part or the whole
domain. In either case the resulting matrix is only semidefinite, and for solvability the
right-hand side should be chosen to satisfy compatibility conditions.

Let A and b be the stiffness matrix and the load vector corresponding to (1.1). Then
the resulting linear system of interest reads,

(1.2) Ax = b .

Note that the coefficients α and β are naturally associated with the “stiffness” and “mass”
terms of A.

Besides A and b, our solution method for (1.2) requires the following additional infor-
mation:

Date: June 12, 2006–beginning; Today is June 30, 2006.
1991 Mathematics Subject Classification. 65F10, 65N20, 65N30.
This work was performed under the auspices of the U. S. Department of Energy by the University of

California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.
1



2 TZANIO V. KOLEV AND PANAYOT S. VASSILEVSKI

(1) The discrete gradient matrix G representing the edges of the mesh in terms of
its vertices. G has as many rows as the number of edges in the mesh, with each
row having two nonzero entries: +1 and −1 in the columns corresponding to the
vertices composing the edge. The sign is determined based on the orientation
of the edge. We require that G includes all (interior and boundary) edges and
vertices.

(2) The representations of the constant vector fields (1, 0, 0),(0, 1, 0) and (0, 0, 1) in
the Vh basis, given as three vectors: Gx, Gy, and Gz. Note that since no boundary
conditions are imposed on G, we can compute the above vectors ad Gx = Ghx,
Gy = Ghy and Gz = Ghz, where x, y, and z are vectors representing the coordi-
nates of the vertices of the mesh.

In addition to the above quantities, our solver can utilize the following (optional)
information:

(3) The Poisson matrices Aα and Aβ, corresponding to assembling of the forms
(α∇u,∇v) + (βu, v) and (β∇u,∇v) using standard linear finite elements on the
same mesh.

As discussed in [7], based on the above quantities we proceed with the construction of
the following additional objects:

• AG – either the matrix GT AG or the Poisson matrix Aβ (if given).
• BG – an efficient solver for AG.
• Π – the matrix representation of the interpolation operator from vector linear to

edge finite elements.
• AΠ – either the matrix ΠT AΠ or the block-diagonal matrix diag(Aα) (if given).
• BΠ – an efficient solver for AΠ.

The solution procedure then is a three-level method using smoothing in the original
edge space and subspace corrections based on BG and BΠ. We can employ a number
of options here utilizing various combinations of the smoother and solvers in additive
or multiplicative fashion. If β is identically zero one can skip the subspace correction
associated with G, in which case the solver is a two-level method.

The remainder of the report is organized as follows. The parallel version of the solver,
as implemented in the hypre library is described in Section 2. Section 3 contains a set of
numerical experiments demonstrating the parallel scalability and overall performance of
the method. Finally, we summarize the results in the concluding Section 4.

2. The AMS solver in hypre

In this section we discuss the parallel implementation of the H1-based auxiliary space
method in the hypre library under the name AMS (Auxiliary space Maxwell Solver).
AMS can be used either as a solver or as a preconditioner. We concentrate here on
the sequence of hypre calls needed to create and use it as a solver. We start with the
allocation of the HYPRE_Solver object:

HYPRE_Solver solver;

HYPRE_AMSCreate(&solver);

Next, we set a number of solver parameters. Some of them are optional, while others
are necessary in order to perform the solver setup.



PARALLEL AUXILIARY SPACE AMG 3

AMS offers the option to set the space dimension. By default we consider the dimension
to be 3. The only other option is 2, and it can be set with the function given below.
We note that a 3D solver will still work for a 2D problem, but it will be slower and will
require more memory than necessary.

HYPRE_AMSSetDimension(solver, dim);

The user is required to provide the discrete gradient matrix G. AMS expects a matrix
defined on the whole mesh with no boundary edges/nodes excluded. It is essential to not
impose any boundary conditions on G. Regardless of which hypre conceptual interface
was used to construct G, one can always obtain a ParCSR version of it. This is the
expected format in the following function.

HYPRE_AMSSetDiscreteGradient(solver, G);

In addition to G, we need one additional piece of information in order to construct the
solver. The user has the option to choose either the coordinates of the vertices in the
mesh or the representations of the constant vector fields in the edge element basis. In
both cases three hypre parallel vectors should be provided. For 2D problems, the user
can set the third vector to NULL. The corresponding function calls read:

HYPRE_AMSSetCoordinateVectors(solver,x,y,z);

or

HYPRE_AMSSetEdgeConstantVectors(solver,

one_zero_zero,

zero_one_zero,

zero_zero_one);

The vectors one_zero_zero, zero_one_zero and zero_zero_one above correspond to
the constant vector fields (1, 0, 0), (0, 1, 0) and (0, 0, 1).

The remaining solver parameters are optional. For example, the user can choose a
different cycle type by calling

HYPRE_AMSSetCycleType(solver, cycle_type); /* default value: 1 */

The available cycle types in AMS are:

• cycle_type=1: multiplicative solver (01210)
• cycle_type=2: additive solver (0 + 1 + 2)
• cycle_type=3: multiplicative solver (02120)
• cycle_type=4: additive solver (010 + 2)
• cycle_type=5: multiplicative solver (0102010)
• cycle_type=6: additive solver (1 + 020)
• cycle_type=7: multiplicative solver (0201020)
• cycle_type=8: additive solver (010 + 020)

Here we use the following convention for the three subspace correction methods: 0 refers
to smoothing, 1 stands for BoomerAMG based on BG, and 2 refers to a call to Boomer-
AMG for BΠ. The abbreviation xyyz for x, y, z ∈ {0, 1, 2} refers to a multiplicative
subspace correction based on solvers x, y, y, and z (in that order). The abbreviation
x + y + z stands for an additive subspace correction method based on x, y and z solvers.
The additive cycles are meant to be used only when AMS is called as a preconditioner.
In our experience the choices cycle_type=1 and cycle_type=5 often produced fastest
solution times, while cycle_type=7 resulted in smallest number of iterations.



4 TZANIO V. KOLEV AND PANAYOT S. VASSILEVSKI

Additional solver parameters, as the maximum number of iterations, the convergence
tolerance and the output level, can be set with

HYPRE_AMSSetMaxIter(solver, maxit); /* default value: 20 */

HYPRE_AMSSetTol(solver, tol); /* default value: 1e-6 */

HYPRE_AMSSetPrintLevel(solver, print); /* default value: 1 */

More advanced parameters, affecting the smoothing and the internal AMG solvers, can
be set with the following three functions:

HYPRE_AMSSetSmoothingOptions(solver, 2, 1, 1.0, 1.0);

HYPRE_AMSSetAlphaAMGOptions(solver, 10, 1, 3, 0.25);

HYPRE_AMSSetBetaAMGOptions(solver, 10, 1, 3, 0.25);

For (singular) problems where β = 0 in the whole domain, different (in fact simpler)
version of the AMS solver is offered. To allow for this simplification, use the following
hypre call

HYPRE_AMSSetBetaPoissonMatrix(solver, NULL);

If β is zero only in parts of the domain, the problem is still singular, but the AMS solver
will try to detect this and construct a non-singular preconditioner.

Two additional matrices are constructed in the setup of the AMS method—one cor-
responding to the coefficient α and another corresponding to β. This may lead to pro-
hibitively high memory requirements, and the next two function calls may help to save
some memory. For example, if the Poisson matrix with coefficient β (denoted by Abeta)
is available then one can avoid one matrix construction by calling

HYPRE_AMSSetBetaPoissonMatrix(solver, Abeta);

Similarly, if the Poisson matrix with coefficient α is available (denoted by Aalpha) the
second matrix construction can also be avoided by calling

HYPRE_AMSSetAlphaPoissonMatrix(solver, Aalpha);

Note the following regarding these functions:

• Both of them change their input. More specifically, the diagonal entries of the
input matrix corresponding to eliminated degrees of freedom (due to essential
boundary conditions) are penalized.

• HYPRE_AMSSetAlphaPoissonMatrix forces the AMS method to use a simpler, but
weaker (in terms of convergence) method. With this option, the multiplicative
AMS cycle is not guaranteed not converge with the default parameters. The
reason for this is the fact the solver is not variationally obtained from the orig-
inal matrix (it utilizes the auxiliary Poisson–like matrices Abeta and Aalpha).
Therefore, it is recommended in this case to use AMS as preconditioner only.

After the above calls, the solver is ready to be constructed. The user has to provide
the stiffness matrix A (in ParCSR format) and the hypre parallel vectors b and x. (The
vectors are actually not used in the current AMS setup.) The setup call reads,

HYPRE_AMSSetup(solver, A, b, x);

It is important to note the order of the calling sequence. For example, do not call
HYPRE_AMSSetup before calling HYPRE_AMSSetDiscreteGradient and one of the func-
tions HYPRE_AMSSetCoordinateVectors or HYPRE_AMSSetEdgeConstantVectors.
Once the setup has completed, we can solve the linear system by calling

HYPRE_AMSSolve(solver, A, b, x);



PARALLEL AUXILIARY SPACE AMG 5

Finally, the solver can be destroyed with

HYPRE_AMSDestroy(&solver);

More details can be found in the files ams.h and ams.c located in the parcsr_ls

directory of hypre .

3. Numerical experiments

In this section we present results from numerical experiments with AMS used as a
preconditioner in PCG. We consider two setups: one using the default solver parameters,
and one with an alternative set of parameters. The default solver parameters were already
described in the preceding section, but for completeness we give here their corresponding
sequence of hypre calls (it is assumed that the user has installed the hypre library [5]):

#include "parcsr_ls.h"

HYPRE_ParCSRMatrix A;

HYPRE_ParVector b, x;

HYPRE_ParCSRMatrix G;

HYPRE_ParVector one_zero_zero, zero_one_zero, zero_zero_one;

/* Declare solver and preconditioner objects */

HYPRE_Solver solver, precond;

/* Create PCG solver */

HYPRE_ParCSRPCGCreate(MPI_COMM_WORLD, &solver);

HYPRE_PCGSetTol(solver, 1e-6); /* convergence tolerance */

/* Create AMS preconditioner */

HYPRE_AMSCreate(&precond);

HYPRE_AMSSetMaxIter(precond, 1); /* do exactly one iteration */

HYPRE_AMSSetTol(precond, 0.0);

HYPRE_AMSSetPrintLevel(precond, 0);

HYPRE_AMSSetDiscreteGradient(precond, G);

HYPRE_AMSSetEdgeConstantVectors(precond,

one_zero_zero,

zero_one_zero,

zero_zero_one);

if (beta_is_identically_zero)

HYPRE_AMSSetBetaPoissonMatrix(precond, NULL);

HYPRE_AMSSetCycleType(precond, 1);

HYPRE_AMSSetSmoothingOptions(precond, 2, 1, 1.0, 1.0);

HYPRE_AMSSetAlphaAMGOptions(precond, 10, 1, 3, 0.25);

HYPRE_AMSSetBetaAMGOptions(precond, 10, 1, 3, 0.25);

/* Set preconditioner */



6 TZANIO V. KOLEV AND PANAYOT S. VASSILEVSKI

Figure 1. Initial unstructured tetrahedral mesh on the unit cube.

HYPRE_PCGSetPrecond(solver,

(HYPRE_PtrToSolverFcn) HYPRE_AMSSolve,

(HYPRE_PtrToSolverFcn) HYPRE_AMSSetup,

precond);

/* Setup */

HYPRE_ParCSRPCGSetup(solver, A, b, x);

/* Solve */

HYPRE_ParCSRPCGSolve(solver, A, b, x);

The alternative set of parameters differs only in the following calls:

HYPRE_AMSSetCycleType(precond, 7);

HYPRE_AMSSetAlphaAMGOptions(precond, 6, 0, 6, 0.25);

HYPRE_AMSSetBetaAMGOptions(precond, 6, 0, 6, 0.25);

As seen from above, in both cases the relative tolerance in PCG was 10−6. The input
matrices and vectors were constructed in parallel using the unstructured finite element
package aFEM. In our experiments, we tried to keep the problem size per processor ap-
proximately the same (while increasing the number of processors), although the resulting
load balance varied somewhat with the number of processors.

We tested both versions of AMS on problems with constant and variable coefficients
and recorded the results using the following notation:

• np denotes the number of processors in the run,
• N is the total size of the problem,
• nit is the number of PCG iterations,
• tsetup, tsolve and t denote the average times (in seconds) needed for setup, solve

and time to solution (setup and solve), respectively, on a machine with 2.4GHz
Xeon processors.

3.1. Constant coefficients. First we consider a simple constant coefficients problem
with α = β = 1. The domain is the unit cube meshed with an unstructured tetrahedral
mesh. The initial coarse mesh, before serial or parallel refinement is shown in Figure 1.



PARALLEL AUXILIARY SPACE AMG 7

AMS AMG
np N nit tsetup tsolve N nit tsetup tsolve

default solver parameters

1 105,877 11 2.5s 4.9s 17,478 13 0.1s 0.3s
2 184,820 12 3.5s 8.4s 29,059 14 0.2s 0.5s
4 293,224 13 2.9s 6.9s 43,881 15 0.1s 0.4s
8 697,618 14 4.2s 9.7s 110,745 18 0.2s 0.7s

16 1,414,371 16 4.6s 11.0s 225,102 18 0.3s 0.8s
32 2,305,232 16 3.9s 9.7s 337,105 20 0.4s 0.9s
64 5,040,829 18 5.2s 12.8s 779,539 22 0.5s 1.4s

128 10,383,148 19 6.5s 15.9s 1,682,661 23 0.8s 1.8s
256 18,280,864 21 7.3s 17.0s 2,642,337 25 1.1s 2.1s
512 38,367,625 23 9.0s 22.0s 5,845,443 28 1.7s 2.8s

1024 78,909,936 25 17.9s 33.2s 12,923,121 30 4.0s 4.8s

alternative solver parameters

1 105,877 4 5.5s 8.8s 17,478 6 0.4s 0.4s
2 184,820 4 9.8s 13.5s 29,059 7 0.7s 0.7s
4 293,224 4 10.5s 10.8s 43,881 7 1.2s 0.8s
8 697,618 5 21.2s 18.3s 110,745 7 2.1s 1.1s

16 1,414,371 5 38.0s 20.5s 225,102 7 3.9s 1.3s
32 2,305,232 5 53.8s 19.4s 337,105 8 7.3s 1.9s
64 5,040,829 6 79.3s 25.3s 779,539 8 10.7s 2.5s

Table 1. Numerical results for the problem with constant coefficients
(α = β = 1) on a cube.

To better assess the quality of the method, we compare the AMS preconditioner with
the BoomerAMG preconditioner in hypre applied to a Laplace problem discretized with
linear finite elements on the same mesh. The results listed in Table 1 show that the
behavior of AMS is qualitatively similar to that of BoomerAMG. This trend, observed in
all our experiments, is to be expected since BoomerAMG is used in the auxiliary space
solves of the AMS solver.

With the default parameters, the number of AMS iterations increases slightly, but
the total run time grows slowly and remains less than a minute. The alternative set
of solver parameters gives constant number of iterations, but the setup time increases
(almost linearly) with the number of processors. The differences between the two sets of
parameters are further investigated in Table 2, where we see that the default parameters
result in bounded operator complexities for the two internal AMG methods, whereas the
alternative parameters lead to high operator complexities. For the definition of grid and
operator complexities, and their influence on AMG performance, we refer to [1].

The scalability of the AMS preconditioner is clearly demonstrated in Figure 2, where
we compare it with a diagonally scaled PCG solver. We only include results for up to
256 processors, since on 512 processors (around 38M unknowns) the diagonally scaled
PCG did not converge in 100, 000 iterations.



8 TZANIO V. KOLEV AND PANAYOT S. VASSILEVSKI

np N nit tsetup tsolve gridG opG gridΠ opΠ

default solver parameters

1 105,877 11 2.5s 4.9s 1.04 1.08 1.05 1.10
2 184,820 12 3.5s 8.4s 1.04 1.08 1.05 1.10
4 293,224 13 2.9s 6.9s 1.04 1.08 1.05 1.10
8 697,618 14 4.2s 9.7s 1.04 1.09 1.05 1.10

16 1,414,371 16 4.6s 11.0s 1.04 1.10 1.06 1.12
32 2,305,232 16 3.9s 9.7s 1.05 1.11 1.06 1.13
64 5,040,829 18 5.2s 12.8s 1.04 1.08 1.04 1.10

128 10,383,148 19 6.5s 15.9s 1.05 1.12 1.06 1.15
256 18,280,864 21 7.3s 17.0s 1.06 1.13 1.07 1.16
512 38,367,625 23 8.7s 20.6s 1.04 1.09 1.04 1.10

1024 78,909,936 25 17.9s 33.2s 1.05 1.12 1.06 1.17

alternative solver parameters

1 105,877 4 5.5s 8.8s 1.79 4.70 1.79 4.45
2 184,820 4 9.8s 13.5s 1.80 4.86 1.83 4.96
4 293,224 4 10.5s 10.8s 1.83 5.77 1.77 4.83
8 697,618 5 21.2s 18.3s 1.89 6.67 1.82 5.94

16 1,414,371 5 38.0s 20.5s 1.92 7.31 1.91 6.82
32 2,305,232 5 53.8s 19.4s 1.97 8.53 1.89 6.80
64 5,040,829 6 79.3s 25.3s 1.80 7.35 1.75 6.44

Table 2. Grid and operator complexities for the subspace solvers in the
problem from Table 1.

1 2 4 8 16 32 64 128 256

30
60
90

120
150
180
210
240
270
300
330
360
390
420
450
480
510
540
570
600
630
660
690

Ti
m

e 
to

 s
ol

ut
io

n 
(s

ec
on

ds
)

Number of processors

AMS−PCG
DS−PCG

1 2 4 8 16 32 64 128 256
10

1

10
2

10
3

10
4

10
5

N
um

be
r o

f i
te

ra
tio

ns

Number of processors

AMS−PCG
DS−PCG

Figure 2. Time to solution (left) and number of iterations (right) for the
constant coefficients problem on a cube: AMS versus Jacobi precondition-
ers.

3.2. Variable coefficients. Next we consider a problem where α and β have different
values in two regions of the domain. The geometry and the results with the two sets



PARALLEL AUXILIARY SPACE AMG 9

of parameters are presented in Tables 3–4. Note that this particular test problem was
reported to be problematic for geometric multigrid in [2].

np N p t
−8 −4 −2 −1 0 1 2 4 8

default solver parameters

α = 1, β ∈ {1, 10p}
1 83,278 9 9 9 9 9 9 10 11 11 5s
2 161,056 10 10 10 10 10 10 10 11 11 9s
4 296,032 11 12 12 12 11 11 12 13 13 9s
8 622,030 13 13 13 12 12 12 13 15 14 12s

16 1,249,272 13 13 13 13 13 13 13 15 14 13s
32 2,330,816 15 15 15 15 15 15 15 16 15 14s
64 4,810,140 16 16 16 16 16 15 16 18 17 17s

128 9,710,856 16 16 16 16 16 16 16 17 17 23s
256 18,497,920 19 19 19 19 19 19 19 21 20 27s
512 37,864,880 21 20 20 20 20 20 20 23 22 32s

1024 76,343,920 20 20 20 20 20 20 20 21 21 56s

β = 1, α ∈ {1, 10p}
1 83,278 10 10 11 10 9 11 12 13 13 6s
2 161,056 10 10 11 10 10 11 12 12 12 10s
4 296,032 11 11 13 12 11 13 14 15 15 11s
8 622,030 13 13 15 14 12 14 16 16 16 14s

16 1,249,272 13 13 14 14 13 14 15 16 16 15s
32 2,330,816 14 15 16 16 15 17 17 18 18 16s
64 4,810,140 16 17 18 17 16 18 19 19 20 20s

128 9,710,856 14 17 17 17 16 18 18 18 19 26s
256 18,497,920 17 19 20 20 19 21 21 22 22 29s
512 37,864,880 19 20 22 22 20 23 24 24 25 36s

1024 76,343,920 17 20 21 21 20 22 23 22 23 76s

Table 3. Number of iterations for the problem on a cube with α and β
having different values in the shown regions (cf. [2]).



10 TZANIO V. KOLEV AND PANAYOT S. VASSILEVSKI

We observe that the number of iterations is not very sensitive to the magnitude of the
jumps in the coefficients. Again, the default parameters lead to overall fastest solution
times. For example, we solved a problem with more than 76 million unknowns and 8
orders of magnitude jumps in the coefficients in less than a minute. In contrast, the
alternative set of parameters gives almost constant number of iterations, independent of
α, β and the problem size, but its overall run time increases similarly to the previous
example.

np N p t
−8 −4 −2 −1 0 1 2 4 8

alternative solver parameters

α = 1, β ∈ {1, 10p}
1 83,278 5 4 4 4 4 4 4 5 5 12s
2 161,056 5 4 4 4 4 4 4 5 5 22s
4 296,032 5 5 5 5 5 4 4 5 5 18s
8 622,030 6 5 5 5 5 5 5 5 5 41s

16 1,249,272 6 5 5 5 5 5 5 5 6 59s
32 2,330,816 6 6 6 6 6 6 6 6 6 44s
64 4,810,140 7 5 5 5 5 5 5 6 6 99s

128 9,710,856 6 6 5 6 6 5 6 6 6 184s

β = 1, α ∈ {1, 10p}
1 83,278 8 7 5 4 4 4 4 5 5 10s
2 161,056 8 8 6 4 4 4 5 5 5 20s
4 296,032 8 8 5 5 5 5 5 5 5 18s
8 622,030 9 8 6 5 5 5 5 5 5 36s

16 1,249,272 9 8 6 5 5 5 6 6 6 52s
32 2,330,816 9 8 6 6 6 6 6 6 6 45s
64 4,810,140 9 9 6 5 5 6 6 6 6 80s

128 9,710,856 9 9 7 6 6 6 6 6 6 164s

Table 4. Results with the alternative solver parameters for the problem
from Table 3.

3.3. Singular problems. Finally, we report results on problems where β is identically
zero in the domain (Table 5) or in part of it (Table 6). In both cases α = 1.

The iteration counts in Table 5 are very similar to those in Table 1. As mentioned
earlier, when β = 0 the solver reduces to a two-level method, which results in the smaller
setup and solution times compared to Table 1.

When β is zero only in part of the domain, we can not use the simpler two-level method,
but the results shown in Table 6 are still very good and comparable with the previous
experiments.

4. Conclusion

The AMS preconditioner in hypre is a scalable solver for definite (and semidefinite)
Maxwell problems discretized with the lowest order edge finite elements. It requires some



PARALLEL AUXILIARY SPACE AMG 11

AMS AMG
np N nit tsetup tsolve N nit tsetup tsolve

default solver parameters

1 105,877 11 2.0s 3.7s 17,478 13 0.1s 0.3s
2 184,820 12 2.8s 6.1s 29,059 14 0.2s 0.5s
4 293,224 13 2.3s 5.1s 43,881 15 0.1s 0.4s
8 697,618 15 3.3s 7.3s 110,745 18 0.2s 0.7s

16 1,414,371 16 3.8s 7.9s 225,102 18 0.3s 0.8s
32 2,305,232 17 3.3s 7.0s 337,105 20 0.4s 0.9s
64 5,040,829 19 4.5s 9.2s 779,539 22 0.5s 1.4s

128 10,383,148 20 5.4s 11.1s 1,682,661 23 0.8s 1.8s
256 18,280,864 23 5.9s 13.1s 2,642,337 25 1.1s 2.1s
512 38,367,625 24 10.4s 14.9s 5,845,443 28 1.7s 2.8s

1024 78,909,936 26 10.8s 21.6s 12,923,121 30 4.0s 4.8s

alternative solver parameters

1 105,877 5 4.8s 4.8s 17,478 6 0.4s 0.4s
2 184,820 6 8.4s 8.7s 29,059 7 0.7s 0.7s
4 293,224 7 9.1s 7.7s 43,881 7 1.2s 0.8s
8 697,618 6 18.4s 9.7s 110,745 7 2.1s 1.1s

16 1,414,371 7 33.4s 12.4s 225,102 7 3.9s 1.3s
32 2,305,232 8 46.1s 12.5s 337,105 8 7.3s 1.9s
64 5,040,829 7 70.3s 13.1s 779,539 8 10.7s 2.5s

Table 5. Numerical results for the singular problem on a cube with α = 1
and β = 0. The geometry is the same as in Figure 1.

additional user input: the discrete gradient matrix and the coordinates of the vertices,
but it can handle both variable coefficients and singular problems with zero conductivity.
In fact, our experiments demonstrate that the performance of AMS on such problems is
very similar to that on problems with α = β = 1.

The general conclusion from the numerical results is that with its default parameters,
AMS can be quite scalable on hundreds of processors. The alternative set of parameters
usually needs significantly less (and constant) number of iterations but its total running
time is not as scalable.

The behavior of AMS on H(curl)) problems is qualitatively similar to that of Boomer-
AMG on Laplace problems discretized on the same mesh. Thus, any further improve-
ments in BoomerAMG’s parameters, or in AMG in general, will lead to additional im-
provements in AMS.

References

[1] V. E. Henson and U. M. Yang, BoomerAMG: A Parallel Algebraic Multigrid Solver and Pre-
conditioner. Applied Numerical Mathematics, 41:155–177, 2002.

[2] R. Hiptmair. Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal., 36(1):204–225,
1999.



12 TZANIO V. KOLEV AND PANAYOT S. VASSILEVSKI

np N nit tsetup tsolve

default solver parameters

1 90,496 11 2.0s 4.7s
2 146,055 12 2.7s 7.3s
4 226,984 13 2.3s 6.3s
8 569,578 15 3.7s 9.3s

16 1,100,033 16 3.9s 10.8s
32 1,806,160 17 3.4s 9.1s
64 4,049,344 19 5.1s 12.8s

128 8,123,586 20 6.7s 15.8s
256 14,411,424 22 6.5s 17.2s
512 30,685,829 25 9.5s 22.6s

1024 61,933,284 24 19.5s 44.8s

alternative solver parameters

2 146,055 6 7.9s 14.6s
4 226,984 6 8.4s 11.5s
8 569,578 6 28.4s 21.7s

16 1,100,033 7 35.8s 24.0s
32 1,806,160 7 43.5s 18.5s
64 4,049,344 7 91.7s 31.3s

Table 6. Initial mesh and numerical results for the problem on a cube
with α = 1 and β equal to 1 inside and 0 outside the interior cube.

[3] R. Hiptmair, G. Widmer, and J. Zou, Auxiliary space preconditioning in H(curl), Numerische
Mathematik, 103(3):435–459, 2006.

[4] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces,
Research Report No. 2006-09, Seminar für Angewandte Mathematik, Eidgenössische Technische
Hochschule, CH-8092 Zürich, Switzerland, May 2006.

[5] hypre: High performance preconditioners. http://www.llnl.gov/CASC/hypre/.
[6] Tz. V. Kolev, J. E. Pasciak and P. S. Vassilevski, H(curl) auxiliary mesh preconditioning, in

preparation
[7] Tz. V. Kolev and P. S. Vassilevski, Some experience with a H1–based auxiliary space AMG for

H(curl)–problems, LLNL Technical Report UCRL-TR-221841.

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.O. Box 808, L-561, Livermore, CA 94551, U.S.A.

E-mail address: tzanio@llnl.gov, panayot@llnl.gov


